Roll No.

GSM/D-23

1132

Total Pages: 04

COMPUTER ORIENTED NUMERICAL **METHODS**

BCA-206

Time: Three Hours]

[Maximum Marks: 80

Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

(Compulsory Question)

- 1. What is the difference between algebraic and (a) transcendental equations?
 - State the rate of convergence of Regula-Falsi (b) method.
 - State the formula for the trapezoidal rule. (c)
 - What are the various types of Runge-Kutta's (d) methods exist?
 - Write down the formula for solving the integral (e) using Simpson's 1/3rd method.
 - In floating point numbers, how to decide how many (f)significant digits must be used?

- (g) Differentiate between interpolation and extrapolation,
- (h) Comment on the purpose of studying Chebyshev's polynomial. 8×2≈16

Unit I

- 2. (a) Explain the various types of errors that occur while performing numerical computations with the help of examples.
 - (b) What do you mean by normalized floating point numbers? Explain the pitfalls in computing using normalized floating point numbers.
- 3. (a) Find a root of the equation

$$x^3 - x^2 - x - 3 = 0$$

using the Bisection method correct up to three decimal digits.

(b) Find the order of convergence of the Newton-Raphson method.

Unit II

4. (a) Solve the following equations by Gauss-elimination method:

$$x_1 + 2x_2 + 3x_3 = 14$$
$$2x_1 + 5x_2 + 2x_3 = 18$$

$$3x_1 + x_2 + 5x_3 = 20.$$

- (b) Write the algorithm for solving a system of linear equations using the Gauss-Siedel method. 8
- 5. (a) Solve $\frac{dy}{dx} = 3x + y$, where y(0) = 0. Find y for x = 0.5 by Euler's method.
 - (b) Given $\frac{dy}{dx} = 1 + y^2$, where y = 0, when x = 0, find y(0.2), y(0.4) and y(0.6) using Runga-Kutta forth order method.

Unit III

- 6. (a) Derive Newton's formulae for interpolation. 8
 - (b) Certain corresponding values of x and $\log_{10} x$ are (300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find $\log_{10} 301$.
- 7. (a) Economize the series:

$$\sinh x = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040}$$

on the interval [-1, 1], allowing for a tolerance of 0.0005.

- (b) Find the power series of the $\log (1 x)$ at $x_0 = 0$ by Taylor's series.
- (5-31/8) L-1132

Unit IV

8. (a) From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2:

2 10						
x 1.0			1.6	1.8	2.0	2.2
y 2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

(b) Compute the values of:

$$I = \int_0^1 \frac{1}{1 + x^2} dx.$$

by using the trapezoidal rule with h = 0.5, 0.25 and 0.125.

9. Derive the Gaussian integration formula when n = 2 and apply this formula to evaluate the integral $\int_{-1}^{1} \frac{1}{1+x^2} dx$

16